15min_WomensMarch/5min append State.ipynb
2017-02-01 14:51:24 -06:00

1090 lines
29 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5 minute append to state column \n",
"\n",
"After taking some time to look around I found usaddress for parsing states. This notebook shows how easy it is to parse addresses with usaddress. I feel that the list of tuples is a bit clunky, but it works and I only spotted one error in the results... Indianna?? really??"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import seaborn as sns\n",
"import usaddress\n",
"% matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df = pd.read_csv('https://query.data.world/s/78ou6jcu4jfseul53lu1w3nio')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>location</th>\n",
" <th>crowd-low-estimate</th>\n",
" <th>crowd-high-estimate</th>\n",
" <th>mean-high-low</th>\n",
" <th>source</th>\n",
" <th>Latitude</th>\n",
" <th>Longitude</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Abilene, TX</td>\n",
" <td>200</td>\n",
" <td>200</td>\n",
" <td>200.0</td>\n",
" <td>http://www.reporternews.com/story/news/local/2...</td>\n",
" <td>32.576489</td>\n",
" <td>-99.665323</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Accident, MD</td>\n",
" <td>54</td>\n",
" <td>54</td>\n",
" <td>54.0</td>\n",
" <td>Twitter; on-site witness</td>\n",
" <td>39.628700</td>\n",
" <td>-79.319760</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Adak, AK</td>\n",
" <td>10</td>\n",
" <td>10</td>\n",
" <td>10.0</td>\n",
" <td>adn.com</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Adrian, MI</td>\n",
" <td>130</td>\n",
" <td>150</td>\n",
" <td>140.0</td>\n",
" <td>https://www.facebook.com/events/847360115406578/</td>\n",
" <td>41.889943</td>\n",
" <td>-84.065892</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Ajo, AZ</td>\n",
" <td>250</td>\n",
" <td>250</td>\n",
" <td>250.0</td>\n",
" <td>https://www.facebook.com/plugins/post.php?href...</td>\n",
" <td>32.384890</td>\n",
" <td>-112.890110</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" location crowd-low-estimate crowd-high-estimate mean-high-low \\\n",
"0 Abilene, TX 200 200 200.0 \n",
"1 Accident, MD 54 54 54.0 \n",
"2 Adak, AK 10 10 10.0 \n",
"3 Adrian, MI 130 150 140.0 \n",
"4 Ajo, AZ 250 250 250.0 \n",
"\n",
" source Latitude Longitude \n",
"0 http://www.reporternews.com/story/news/local/2... 32.576489 -99.665323 \n",
"1 Twitter; on-site witness 39.628700 -79.319760 \n",
"2 adn.com 0.000000 0.000000 \n",
"3 https://www.facebook.com/events/847360115406578/ 41.889943 -84.065892 \n",
"4 https://www.facebook.com/plugins/post.php?href... 32.384890 -112.890110 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## original method\n",
"using last 2 characters of location"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df['State'] = df['location'].str[-2:]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>location</th>\n",
" </tr>\n",
" <tr>\n",
" <th>State</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>CA</th>\n",
" <td>69</td>\n",
" </tr>\n",
" <tr>\n",
" <th>WA</th>\n",
" <td>27</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NY</th>\n",
" <td>25</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OR</th>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AK</th>\n",
" <td>22</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" location\n",
"State \n",
"CA 69\n",
"WA 27\n",
"NY 25\n",
"OR 24\n",
"AK 22"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby('State').count().sort_values('location', ascending=False)[['location']].head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looks Like there are a few errors in State that would need cleansed (at least 12)\n",
"\n",
"15 minutes is not enough to fix this by hand, I know there is a package that would do this faster that has been mentioned on talk python to me. Ill have to look into this package another day"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"62"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df.groupby('State').count())"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>location</th>\n",
" </tr>\n",
" <tr>\n",
" <th>State</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>DE</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OK</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LA</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DC</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>RI</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ah</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>er</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>es</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ge</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>le</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>na</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>nd</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>on</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>t)</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>te</th>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" location\n",
"State \n",
"DE 2\n",
"OK 2\n",
"LA 2\n",
"DC 1\n",
"RI 1\n",
"ah 1\n",
"er 1\n",
"es 1\n",
"ge 1\n",
"le 1\n",
"na 1\n",
"nd 1\n",
"on 1\n",
"t) 1\n",
"te 1"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby('State').count().sort_values('location', ascending=False)[['location']].tail(15)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usaddress Method"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df['Address'] = df['location'].apply(usaddress.parse)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"10 [(Albuquerque,, PlaceName), (NM, StateName)]\n",
"11 [(Almanor, PlaceName), (West,, PlaceName), (CA...\n",
"12 [(Alpine,, PlaceName), (TX, StateName)]\n",
"13 [(Amarillo,, PlaceName), (TX, StateName)]\n",
"14 [(Amelia, StreetName), (Island,, StreetNamePos...\n",
"15 [(Anacortes,, PlaceName), (WA, StateName)]\n",
"16 [(Anchorage,, PlaceName), (AK, StateName)]\n",
"17 [(Ann, PlaceName), (Arbor,, PlaceName), (MI, S...\n",
"18 [(Annapolis,, PlaceName), (MD, StateName)]\n",
"19 [(Arlington,, PlaceName), (VA, StateName)]\n",
"Name: Address, dtype: object"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Address'].iloc[10:20]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>(Albuquerque,, PlaceName)</td>\n",
" <td>(NM, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>(Almanor, PlaceName)</td>\n",
" <td>(West,, PlaceName)</td>\n",
" <td>(CA, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>(Alpine,, PlaceName)</td>\n",
" <td>(TX, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>(Amarillo,, PlaceName)</td>\n",
" <td>(TX, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>(Amelia, StreetName)</td>\n",
" <td>(Island,, StreetNamePostType)</td>\n",
" <td>(FL, OccupancyType)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>(Anacortes,, PlaceName)</td>\n",
" <td>(WA, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>(Anchorage,, PlaceName)</td>\n",
" <td>(AK, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>(Ann, PlaceName)</td>\n",
" <td>(Arbor,, PlaceName)</td>\n",
" <td>(MI, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>(Annapolis,, PlaceName)</td>\n",
" <td>(MD, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>(Arlington,, PlaceName)</td>\n",
" <td>(VA, StateName)</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1 \\\n",
"10 (Albuquerque,, PlaceName) (NM, StateName) \n",
"11 (Almanor, PlaceName) (West,, PlaceName) \n",
"12 (Alpine,, PlaceName) (TX, StateName) \n",
"13 (Amarillo,, PlaceName) (TX, StateName) \n",
"14 (Amelia, StreetName) (Island,, StreetNamePostType) \n",
"15 (Anacortes,, PlaceName) (WA, StateName) \n",
"16 (Anchorage,, PlaceName) (AK, StateName) \n",
"17 (Ann, PlaceName) (Arbor,, PlaceName) \n",
"18 (Annapolis,, PlaceName) (MD, StateName) \n",
"19 (Arlington,, PlaceName) (VA, StateName) \n",
"\n",
" 2 3 4 5 \n",
"10 None None None None \n",
"11 (CA, StateName) None None None \n",
"12 None None None None \n",
"13 None None None None \n",
"14 (FL, OccupancyType) None None None \n",
"15 None None None None \n",
"16 None None None None \n",
"17 (MI, StateName) None None None \n",
"18 None None None None \n",
"19 None None None None "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame.from_records(df['Address'].values.tolist()).iloc[10:20]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def get_state(lst):\n",
" for tpl in lst:\n",
" if tpl[1] == 'StateName':\n",
" return tpl[0]\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df['State'] = df['Address'].apply(get_state)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"53"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df.groupby('State').count())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Errors? 53?\n",
"Looks like there were 53 states it counted PR (Puerto Rico), and DC which is good. But it also included Indianna?? not sure why, but I am impressed with the reults."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>location</th>\n",
" </tr>\n",
" <tr>\n",
" <th>State</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>CA</th>\n",
" <td>70</td>\n",
" </tr>\n",
" <tr>\n",
" <th>WA</th>\n",
" <td>27</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NY</th>\n",
" <td>25</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OR</th>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AK</th>\n",
" <td>22</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MI</th>\n",
" <td>20</td>\n",
" </tr>\n",
" <tr>\n",
" <th>TX</th>\n",
" <td>20</td>\n",
" </tr>\n",
" <tr>\n",
" <th>PA</th>\n",
" <td>19</td>\n",
" </tr>\n",
" <tr>\n",
" <th>CO</th>\n",
" <td>19</td>\n",
" </tr>\n",
" <tr>\n",
" <th>WI</th>\n",
" <td>16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NC</th>\n",
" <td>15</td>\n",
" </tr>\n",
" <tr>\n",
" <th>FL</th>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>VA</th>\n",
" <td>13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NM</th>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OH</th>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AZ</th>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ME</th>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NJ</th>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MN</th>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MA</th>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IL</th>\n",
" <td>9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>UT</th>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IN</th>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ID</th>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MD</th>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>TN</th>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NH</th>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IA</th>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>GA</th>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>HI</th>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>CT</th>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SD</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SC</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>PR</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MS</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MO</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AR</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NV</th>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>VT</th>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>NE</th>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>KY</th>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MT</th>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ND</th>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>WY</th>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AL</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>LA</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>KS</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DE</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OK</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>WV</th>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>RI</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Indiana</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DC</th>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" location\n",
"State \n",
"CA 70\n",
"WA 27\n",
"NY 25\n",
"OR 24\n",
"AK 22\n",
"MI 20\n",
"TX 20\n",
"PA 19\n",
"CO 19\n",
"WI 16\n",
"NC 15\n",
"FL 14\n",
"VA 13\n",
"NM 11\n",
"OH 11\n",
"AZ 11\n",
"ME 11\n",
"NJ 10\n",
"MN 10\n",
"MA 10\n",
"IL 9\n",
"UT 8\n",
"IN 8\n",
"ID 8\n",
"MD 7\n",
"TN 7\n",
"NH 7\n",
"IA 6\n",
"GA 6\n",
"HI 5\n",
"CT 5\n",
"SD 4\n",
"SC 4\n",
"PR 4\n",
"MS 4\n",
"MO 4\n",
"AR 4\n",
"NV 3\n",
"VT 3\n",
"NE 3\n",
"KY 3\n",
"MT 3\n",
"ND 3\n",
"WY 3\n",
"AL 2\n",
"LA 2\n",
"KS 2\n",
"DE 2\n",
"OK 2\n",
"WV 2\n",
"RI 1\n",
"Indiana 1\n",
"DC 1"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby('State').count().sort_values('location', ascending=False)[['location']]"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[('Amarillo,', 'PlaceName'), ('TX', 'StateName')]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Address'].values.tolist()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"warning: LF will be replaced by CRLF in .ipynb_checkpoints/5min append State-checkpoint.ipynb.\n",
"The file will have its original line endings in your working directory.\n",
"warning: LF will be replaced by CRLF in 5min append State.ipynb.\n",
"The file will have its original line endings in your working directory.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[master c370888] added 5min append State exporing the usaddress package\n",
" Committer: Rhiannon Walker <Rhiannon Walker>\n",
"Your name and email address were configured automatically based\n",
"on your username and hostname. Please check that they are accurate.\n",
"You can suppress this message by setting them explicitly. Run the\n",
"following command and follow the instructions in your editor to edit\n",
"your configuration file:\n",
"\n",
" git config --global --edit\n",
"\n",
"After doing this, you may fix the identity used for this commit with:\n",
"\n",
" git commit --amend --reset-author\n",
"\n",
" 2 files changed, 1998 insertions(+)\n",
" create mode 100644 .ipynb_checkpoints/5min append State-checkpoint.ipynb\n",
" create mode 100644 5min append State.ipynb\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"To https://github.com/WaylonWalker/15min_WomensMarch.git\n",
" ! [rejected] master -> master (fetch first)\n",
"error: failed to push some refs to 'https://github.com/WaylonWalker/15min_WomensMarch.git'\n",
"hint: Updates were rejected because the remote contains work that you do\n",
"hint: not have locally. This is usually caused by another repository pushing\n",
"hint: to the same ref. You may want to first integrate the remote changes\n",
"hint: (e.g., 'git pull ...') before pushing again.\n",
"hint: See the 'Note about fast-forwards' in 'git push --help' for details.\n"
]
}
],
"source": [
"!git add .\n",
"!git commit -m \"added 5min append State exporing the usaddress package\"\n",
"!git push"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Merge made by the 'recursive' strategy.\n",
" README.md | 8 ++++++++\n",
" 1 file changed, 8 insertions(+)\n",
" create mode 100644 README.md\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"From https://github.com/WaylonWalker/15min_WomensMarch\n",
" 680e352..291d5f8 master -> origin/master\n"
]
}
],
"source": [
"!git pull"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [conda root]",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.5"
}
},
"nbformat": 4,
"nbformat_minor": 1
}