init
This commit is contained in:
commit
38355d2442
9083 changed files with 1225834 additions and 0 deletions
548
.venv/lib/python3.8/site-packages/mypy/plugins/dataclasses.py
Normal file
548
.venv/lib/python3.8/site-packages/mypy/plugins/dataclasses.py
Normal file
|
|
@ -0,0 +1,548 @@
|
|||
"""Plugin that provides support for dataclasses."""
|
||||
|
||||
from typing import Dict, List, Set, Tuple, Optional
|
||||
from typing_extensions import Final
|
||||
|
||||
from mypy.nodes import (
|
||||
ARG_OPT, ARG_NAMED, ARG_NAMED_OPT, ARG_POS, ARG_STAR, ARG_STAR2, MDEF,
|
||||
Argument, AssignmentStmt, CallExpr, Context, Expression, JsonDict,
|
||||
NameExpr, RefExpr, SymbolTableNode, TempNode, TypeInfo, Var, TypeVarExpr,
|
||||
PlaceholderNode
|
||||
)
|
||||
from mypy.plugin import ClassDefContext, SemanticAnalyzerPluginInterface
|
||||
from mypy.plugins.common import (
|
||||
add_method, _get_decorator_bool_argument, deserialize_and_fixup_type, add_attribute_to_class,
|
||||
)
|
||||
from mypy.typeops import map_type_from_supertype
|
||||
from mypy.types import (
|
||||
Type, Instance, NoneType, TypeVarType, CallableType, TupleType, LiteralType,
|
||||
get_proper_type, AnyType, TypeOfAny,
|
||||
)
|
||||
from mypy.server.trigger import make_wildcard_trigger
|
||||
|
||||
# The set of decorators that generate dataclasses.
|
||||
dataclass_makers: Final = {
|
||||
'dataclass',
|
||||
'dataclasses.dataclass',
|
||||
}
|
||||
# The set of functions that generate dataclass fields.
|
||||
field_makers: Final = {
|
||||
'dataclasses.field',
|
||||
}
|
||||
|
||||
|
||||
SELF_TVAR_NAME: Final = "_DT"
|
||||
|
||||
|
||||
class DataclassAttribute:
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
is_in_init: bool,
|
||||
is_init_var: bool,
|
||||
has_default: bool,
|
||||
line: int,
|
||||
column: int,
|
||||
type: Optional[Type],
|
||||
info: TypeInfo,
|
||||
kw_only: bool,
|
||||
) -> None:
|
||||
self.name = name
|
||||
self.is_in_init = is_in_init
|
||||
self.is_init_var = is_init_var
|
||||
self.has_default = has_default
|
||||
self.line = line
|
||||
self.column = column
|
||||
self.type = type
|
||||
self.info = info
|
||||
self.kw_only = kw_only
|
||||
|
||||
def to_argument(self) -> Argument:
|
||||
arg_kind = ARG_POS
|
||||
if self.kw_only and self.has_default:
|
||||
arg_kind = ARG_NAMED_OPT
|
||||
elif self.kw_only and not self.has_default:
|
||||
arg_kind = ARG_NAMED
|
||||
elif not self.kw_only and self.has_default:
|
||||
arg_kind = ARG_OPT
|
||||
return Argument(
|
||||
variable=self.to_var(),
|
||||
type_annotation=self.type,
|
||||
initializer=None,
|
||||
kind=arg_kind,
|
||||
)
|
||||
|
||||
def to_var(self) -> Var:
|
||||
return Var(self.name, self.type)
|
||||
|
||||
def serialize(self) -> JsonDict:
|
||||
assert self.type
|
||||
return {
|
||||
'name': self.name,
|
||||
'is_in_init': self.is_in_init,
|
||||
'is_init_var': self.is_init_var,
|
||||
'has_default': self.has_default,
|
||||
'line': self.line,
|
||||
'column': self.column,
|
||||
'type': self.type.serialize(),
|
||||
'kw_only': self.kw_only,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def deserialize(
|
||||
cls, info: TypeInfo, data: JsonDict, api: SemanticAnalyzerPluginInterface
|
||||
) -> 'DataclassAttribute':
|
||||
data = data.copy()
|
||||
if data.get('kw_only') is None:
|
||||
data['kw_only'] = False
|
||||
typ = deserialize_and_fixup_type(data.pop('type'), api)
|
||||
return cls(type=typ, info=info, **data)
|
||||
|
||||
def expand_typevar_from_subtype(self, sub_type: TypeInfo) -> None:
|
||||
"""Expands type vars in the context of a subtype when an attribute is inherited
|
||||
from a generic super type."""
|
||||
if not isinstance(self.type, TypeVarType):
|
||||
return
|
||||
|
||||
self.type = map_type_from_supertype(self.type, sub_type, self.info)
|
||||
|
||||
|
||||
class DataclassTransformer:
|
||||
def __init__(self, ctx: ClassDefContext) -> None:
|
||||
self._ctx = ctx
|
||||
|
||||
def transform(self) -> None:
|
||||
"""Apply all the necessary transformations to the underlying
|
||||
dataclass so as to ensure it is fully type checked according
|
||||
to the rules in PEP 557.
|
||||
"""
|
||||
ctx = self._ctx
|
||||
info = self._ctx.cls.info
|
||||
attributes = self.collect_attributes()
|
||||
if attributes is None:
|
||||
# Some definitions are not ready, defer() should be already called.
|
||||
return
|
||||
for attr in attributes:
|
||||
if attr.type is None:
|
||||
ctx.api.defer()
|
||||
return
|
||||
decorator_arguments = {
|
||||
'init': _get_decorator_bool_argument(self._ctx, 'init', True),
|
||||
'eq': _get_decorator_bool_argument(self._ctx, 'eq', True),
|
||||
'order': _get_decorator_bool_argument(self._ctx, 'order', False),
|
||||
'frozen': _get_decorator_bool_argument(self._ctx, 'frozen', False),
|
||||
'slots': _get_decorator_bool_argument(self._ctx, 'slots', False),
|
||||
'match_args': _get_decorator_bool_argument(self._ctx, 'match_args', True),
|
||||
}
|
||||
py_version = self._ctx.api.options.python_version
|
||||
|
||||
# If there are no attributes, it may be that the semantic analyzer has not
|
||||
# processed them yet. In order to work around this, we can simply skip generating
|
||||
# __init__ if there are no attributes, because if the user truly did not define any,
|
||||
# then the object default __init__ with an empty signature will be present anyway.
|
||||
if (decorator_arguments['init'] and
|
||||
('__init__' not in info.names or info.names['__init__'].plugin_generated) and
|
||||
attributes):
|
||||
|
||||
args = [attr.to_argument() for attr in attributes if attr.is_in_init
|
||||
and not self._is_kw_only_type(attr.type)]
|
||||
|
||||
if info.fallback_to_any:
|
||||
# Make positional args optional since we don't know their order.
|
||||
# This will at least allow us to typecheck them if they are called
|
||||
# as kwargs
|
||||
for arg in args:
|
||||
if arg.kind == ARG_POS:
|
||||
arg.kind = ARG_OPT
|
||||
|
||||
nameless_var = Var('')
|
||||
args = [Argument(nameless_var, AnyType(TypeOfAny.explicit), None, ARG_STAR),
|
||||
*args,
|
||||
Argument(nameless_var, AnyType(TypeOfAny.explicit), None, ARG_STAR2),
|
||||
]
|
||||
|
||||
add_method(
|
||||
ctx,
|
||||
'__init__',
|
||||
args=args,
|
||||
return_type=NoneType(),
|
||||
)
|
||||
|
||||
if (decorator_arguments['eq'] and info.get('__eq__') is None or
|
||||
decorator_arguments['order']):
|
||||
# Type variable for self types in generated methods.
|
||||
obj_type = ctx.api.named_type('builtins.object')
|
||||
self_tvar_expr = TypeVarExpr(SELF_TVAR_NAME, info.fullname + '.' + SELF_TVAR_NAME,
|
||||
[], obj_type)
|
||||
info.names[SELF_TVAR_NAME] = SymbolTableNode(MDEF, self_tvar_expr)
|
||||
|
||||
# Add <, >, <=, >=, but only if the class has an eq method.
|
||||
if decorator_arguments['order']:
|
||||
if not decorator_arguments['eq']:
|
||||
ctx.api.fail('eq must be True if order is True', ctx.cls)
|
||||
|
||||
for method_name in ['__lt__', '__gt__', '__le__', '__ge__']:
|
||||
# Like for __eq__ and __ne__, we want "other" to match
|
||||
# the self type.
|
||||
obj_type = ctx.api.named_type('builtins.object')
|
||||
order_tvar_def = TypeVarType(SELF_TVAR_NAME, info.fullname + '.' + SELF_TVAR_NAME,
|
||||
-1, [], obj_type)
|
||||
order_return_type = ctx.api.named_type('builtins.bool')
|
||||
order_args = [
|
||||
Argument(Var('other', order_tvar_def), order_tvar_def, None, ARG_POS)
|
||||
]
|
||||
|
||||
existing_method = info.get(method_name)
|
||||
if existing_method is not None and not existing_method.plugin_generated:
|
||||
assert existing_method.node
|
||||
ctx.api.fail(
|
||||
'You may not have a custom %s method when order=True' % method_name,
|
||||
existing_method.node,
|
||||
)
|
||||
|
||||
add_method(
|
||||
ctx,
|
||||
method_name,
|
||||
args=order_args,
|
||||
return_type=order_return_type,
|
||||
self_type=order_tvar_def,
|
||||
tvar_def=order_tvar_def,
|
||||
)
|
||||
|
||||
if decorator_arguments['frozen']:
|
||||
self._freeze(attributes)
|
||||
else:
|
||||
self._propertize_callables(attributes)
|
||||
|
||||
if decorator_arguments['slots']:
|
||||
self.add_slots(info, attributes, correct_version=py_version >= (3, 10))
|
||||
|
||||
self.reset_init_only_vars(info, attributes)
|
||||
|
||||
if (decorator_arguments['match_args'] and
|
||||
('__match_args__' not in info.names or
|
||||
info.names['__match_args__'].plugin_generated) and
|
||||
attributes):
|
||||
str_type = ctx.api.named_type("builtins.str")
|
||||
literals: List[Type] = [LiteralType(attr.name, str_type)
|
||||
for attr in attributes if attr.is_in_init]
|
||||
match_args_type = TupleType(literals, ctx.api.named_type("builtins.tuple"))
|
||||
add_attribute_to_class(ctx.api, ctx.cls, "__match_args__", match_args_type)
|
||||
|
||||
self._add_dataclass_fields_magic_attribute()
|
||||
|
||||
info.metadata['dataclass'] = {
|
||||
'attributes': [attr.serialize() for attr in attributes],
|
||||
'frozen': decorator_arguments['frozen'],
|
||||
}
|
||||
|
||||
def add_slots(self,
|
||||
info: TypeInfo,
|
||||
attributes: List[DataclassAttribute],
|
||||
*,
|
||||
correct_version: bool) -> None:
|
||||
if not correct_version:
|
||||
# This means that version is lower than `3.10`,
|
||||
# it is just a non-existent argument for `dataclass` function.
|
||||
self._ctx.api.fail(
|
||||
'Keyword argument "slots" for "dataclass" '
|
||||
'is only valid in Python 3.10 and higher',
|
||||
self._ctx.reason,
|
||||
)
|
||||
return
|
||||
|
||||
generated_slots = {attr.name for attr in attributes}
|
||||
if ((info.slots is not None and info.slots != generated_slots)
|
||||
or info.names.get('__slots__')):
|
||||
# This means we have a slots conflict.
|
||||
# Class explicitly specifies a different `__slots__` field.
|
||||
# And `@dataclass(slots=True)` is used.
|
||||
# In runtime this raises a type error.
|
||||
self._ctx.api.fail(
|
||||
'"{}" both defines "__slots__" and is used with "slots=True"'.format(
|
||||
self._ctx.cls.name,
|
||||
),
|
||||
self._ctx.cls,
|
||||
)
|
||||
return
|
||||
|
||||
info.slots = generated_slots
|
||||
|
||||
def reset_init_only_vars(self, info: TypeInfo, attributes: List[DataclassAttribute]) -> None:
|
||||
"""Remove init-only vars from the class and reset init var declarations."""
|
||||
for attr in attributes:
|
||||
if attr.is_init_var:
|
||||
if attr.name in info.names:
|
||||
del info.names[attr.name]
|
||||
else:
|
||||
# Nodes of superclass InitVars not used in __init__ cannot be reached.
|
||||
assert attr.is_init_var
|
||||
for stmt in info.defn.defs.body:
|
||||
if isinstance(stmt, AssignmentStmt) and stmt.unanalyzed_type:
|
||||
lvalue = stmt.lvalues[0]
|
||||
if isinstance(lvalue, NameExpr) and lvalue.name == attr.name:
|
||||
# Reset node so that another semantic analysis pass will
|
||||
# recreate a symbol node for this attribute.
|
||||
lvalue.node = None
|
||||
|
||||
def collect_attributes(self) -> Optional[List[DataclassAttribute]]:
|
||||
"""Collect all attributes declared in the dataclass and its parents.
|
||||
|
||||
All assignments of the form
|
||||
|
||||
a: SomeType
|
||||
b: SomeOtherType = ...
|
||||
|
||||
are collected.
|
||||
"""
|
||||
# First, collect attributes belonging to the current class.
|
||||
ctx = self._ctx
|
||||
cls = self._ctx.cls
|
||||
attrs: List[DataclassAttribute] = []
|
||||
known_attrs: Set[str] = set()
|
||||
kw_only = _get_decorator_bool_argument(ctx, 'kw_only', False)
|
||||
for stmt in cls.defs.body:
|
||||
# Any assignment that doesn't use the new type declaration
|
||||
# syntax can be ignored out of hand.
|
||||
if not (isinstance(stmt, AssignmentStmt) and stmt.new_syntax):
|
||||
continue
|
||||
|
||||
# a: int, b: str = 1, 'foo' is not supported syntax so we
|
||||
# don't have to worry about it.
|
||||
lhs = stmt.lvalues[0]
|
||||
if not isinstance(lhs, NameExpr):
|
||||
continue
|
||||
|
||||
sym = cls.info.names.get(lhs.name)
|
||||
if sym is None:
|
||||
# This name is likely blocked by a star import. We don't need to defer because
|
||||
# defer() is already called by mark_incomplete().
|
||||
continue
|
||||
|
||||
node = sym.node
|
||||
if isinstance(node, PlaceholderNode):
|
||||
# This node is not ready yet.
|
||||
return None
|
||||
assert isinstance(node, Var)
|
||||
|
||||
# x: ClassVar[int] is ignored by dataclasses.
|
||||
if node.is_classvar:
|
||||
continue
|
||||
|
||||
# x: InitVar[int] is turned into x: int and is removed from the class.
|
||||
is_init_var = False
|
||||
node_type = get_proper_type(node.type)
|
||||
if (isinstance(node_type, Instance) and
|
||||
node_type.type.fullname == 'dataclasses.InitVar'):
|
||||
is_init_var = True
|
||||
node.type = node_type.args[0]
|
||||
|
||||
if self._is_kw_only_type(node_type):
|
||||
kw_only = True
|
||||
|
||||
has_field_call, field_args = _collect_field_args(stmt.rvalue, ctx)
|
||||
|
||||
is_in_init_param = field_args.get('init')
|
||||
if is_in_init_param is None:
|
||||
is_in_init = True
|
||||
else:
|
||||
is_in_init = bool(ctx.api.parse_bool(is_in_init_param))
|
||||
|
||||
has_default = False
|
||||
# Ensure that something like x: int = field() is rejected
|
||||
# after an attribute with a default.
|
||||
if has_field_call:
|
||||
has_default = 'default' in field_args or 'default_factory' in field_args
|
||||
|
||||
# All other assignments are already type checked.
|
||||
elif not isinstance(stmt.rvalue, TempNode):
|
||||
has_default = True
|
||||
|
||||
if not has_default:
|
||||
# Make all non-default attributes implicit because they are de-facto set
|
||||
# on self in the generated __init__(), not in the class body.
|
||||
sym.implicit = True
|
||||
|
||||
is_kw_only = kw_only
|
||||
# Use the kw_only field arg if it is provided. Otherwise use the
|
||||
# kw_only value from the decorator parameter.
|
||||
field_kw_only_param = field_args.get('kw_only')
|
||||
if field_kw_only_param is not None:
|
||||
is_kw_only = bool(ctx.api.parse_bool(field_kw_only_param))
|
||||
|
||||
known_attrs.add(lhs.name)
|
||||
attrs.append(DataclassAttribute(
|
||||
name=lhs.name,
|
||||
is_in_init=is_in_init,
|
||||
is_init_var=is_init_var,
|
||||
has_default=has_default,
|
||||
line=stmt.line,
|
||||
column=stmt.column,
|
||||
type=sym.type,
|
||||
info=cls.info,
|
||||
kw_only=is_kw_only,
|
||||
))
|
||||
|
||||
# Next, collect attributes belonging to any class in the MRO
|
||||
# as long as those attributes weren't already collected. This
|
||||
# makes it possible to overwrite attributes in subclasses.
|
||||
# copy() because we potentially modify all_attrs below and if this code requires debugging
|
||||
# we'll have unmodified attrs laying around.
|
||||
all_attrs = attrs.copy()
|
||||
for info in cls.info.mro[1:-1]:
|
||||
if 'dataclass' not in info.metadata:
|
||||
continue
|
||||
|
||||
super_attrs = []
|
||||
# Each class depends on the set of attributes in its dataclass ancestors.
|
||||
ctx.api.add_plugin_dependency(make_wildcard_trigger(info.fullname))
|
||||
|
||||
for data in info.metadata["dataclass"]["attributes"]:
|
||||
name: str = data["name"]
|
||||
if name not in known_attrs:
|
||||
attr = DataclassAttribute.deserialize(info, data, ctx.api)
|
||||
attr.expand_typevar_from_subtype(ctx.cls.info)
|
||||
known_attrs.add(name)
|
||||
super_attrs.append(attr)
|
||||
elif all_attrs:
|
||||
# How early in the attribute list an attribute appears is determined by the
|
||||
# reverse MRO, not simply MRO.
|
||||
# See https://docs.python.org/3/library/dataclasses.html#inheritance for
|
||||
# details.
|
||||
for attr in all_attrs:
|
||||
if attr.name == name:
|
||||
all_attrs.remove(attr)
|
||||
super_attrs.append(attr)
|
||||
break
|
||||
all_attrs = super_attrs + all_attrs
|
||||
all_attrs.sort(key=lambda a: a.kw_only)
|
||||
|
||||
# Ensure that arguments without a default don't follow
|
||||
# arguments that have a default.
|
||||
found_default = False
|
||||
# Ensure that the KW_ONLY sentinel is only provided once
|
||||
found_kw_sentinel = False
|
||||
for attr in all_attrs:
|
||||
# If we find any attribute that is_in_init, not kw_only, and that
|
||||
# doesn't have a default after one that does have one,
|
||||
# then that's an error.
|
||||
if found_default and attr.is_in_init and not attr.has_default and not attr.kw_only:
|
||||
# If the issue comes from merging different classes, report it
|
||||
# at the class definition point.
|
||||
context = (Context(line=attr.line, column=attr.column) if attr in attrs
|
||||
else ctx.cls)
|
||||
ctx.api.fail(
|
||||
'Attributes without a default cannot follow attributes with one',
|
||||
context,
|
||||
)
|
||||
|
||||
found_default = found_default or (attr.has_default and attr.is_in_init)
|
||||
if found_kw_sentinel and self._is_kw_only_type(attr.type):
|
||||
context = (Context(line=attr.line, column=attr.column) if attr in attrs
|
||||
else ctx.cls)
|
||||
ctx.api.fail(
|
||||
'There may not be more than one field with the KW_ONLY type',
|
||||
context,
|
||||
)
|
||||
found_kw_sentinel = found_kw_sentinel or self._is_kw_only_type(attr.type)
|
||||
|
||||
return all_attrs
|
||||
|
||||
def _freeze(self, attributes: List[DataclassAttribute]) -> None:
|
||||
"""Converts all attributes to @property methods in order to
|
||||
emulate frozen classes.
|
||||
"""
|
||||
info = self._ctx.cls.info
|
||||
for attr in attributes:
|
||||
sym_node = info.names.get(attr.name)
|
||||
if sym_node is not None:
|
||||
var = sym_node.node
|
||||
assert isinstance(var, Var)
|
||||
var.is_property = True
|
||||
else:
|
||||
var = attr.to_var()
|
||||
var.info = info
|
||||
var.is_property = True
|
||||
var._fullname = info.fullname + '.' + var.name
|
||||
info.names[var.name] = SymbolTableNode(MDEF, var)
|
||||
|
||||
def _propertize_callables(self, attributes: List[DataclassAttribute]) -> None:
|
||||
"""Converts all attributes with callable types to @property methods.
|
||||
|
||||
This avoids the typechecker getting confused and thinking that
|
||||
`my_dataclass_instance.callable_attr(foo)` is going to receive a
|
||||
`self` argument (it is not).
|
||||
|
||||
"""
|
||||
info = self._ctx.cls.info
|
||||
for attr in attributes:
|
||||
if isinstance(get_proper_type(attr.type), CallableType):
|
||||
var = attr.to_var()
|
||||
var.info = info
|
||||
var.is_property = True
|
||||
var.is_settable_property = True
|
||||
var._fullname = info.fullname + '.' + var.name
|
||||
info.names[var.name] = SymbolTableNode(MDEF, var)
|
||||
|
||||
def _is_kw_only_type(self, node: Optional[Type]) -> bool:
|
||||
"""Checks if the type of the node is the KW_ONLY sentinel value."""
|
||||
if node is None:
|
||||
return False
|
||||
node_type = get_proper_type(node)
|
||||
if not isinstance(node_type, Instance):
|
||||
return False
|
||||
return node_type.type.fullname == 'dataclasses.KW_ONLY'
|
||||
|
||||
def _add_dataclass_fields_magic_attribute(self) -> None:
|
||||
attr_name = '__dataclass_fields__'
|
||||
any_type = AnyType(TypeOfAny.explicit)
|
||||
field_type = self._ctx.api.named_type_or_none('dataclasses.Field', [any_type]) or any_type
|
||||
attr_type = self._ctx.api.named_type('builtins.dict', [
|
||||
self._ctx.api.named_type('builtins.str'),
|
||||
field_type,
|
||||
])
|
||||
var = Var(name=attr_name, type=attr_type)
|
||||
var.info = self._ctx.cls.info
|
||||
var._fullname = self._ctx.cls.info.fullname + '.' + attr_name
|
||||
self._ctx.cls.info.names[attr_name] = SymbolTableNode(
|
||||
kind=MDEF,
|
||||
node=var,
|
||||
plugin_generated=True,
|
||||
)
|
||||
|
||||
|
||||
def dataclass_class_maker_callback(ctx: ClassDefContext) -> None:
|
||||
"""Hooks into the class typechecking process to add support for dataclasses.
|
||||
"""
|
||||
transformer = DataclassTransformer(ctx)
|
||||
transformer.transform()
|
||||
|
||||
|
||||
def _collect_field_args(expr: Expression,
|
||||
ctx: ClassDefContext) -> Tuple[bool, Dict[str, Expression]]:
|
||||
"""Returns a tuple where the first value represents whether or not
|
||||
the expression is a call to dataclass.field and the second is a
|
||||
dictionary of the keyword arguments that field() was called with.
|
||||
"""
|
||||
if (
|
||||
isinstance(expr, CallExpr) and
|
||||
isinstance(expr.callee, RefExpr) and
|
||||
expr.callee.fullname in field_makers
|
||||
):
|
||||
# field() only takes keyword arguments.
|
||||
args = {}
|
||||
for name, arg, kind in zip(expr.arg_names, expr.args, expr.arg_kinds):
|
||||
if not kind.is_named():
|
||||
if kind.is_named(star=True):
|
||||
# This means that `field` is used with `**` unpacking,
|
||||
# the best we can do for now is not to fail.
|
||||
# TODO: we can infer what's inside `**` and try to collect it.
|
||||
message = 'Unpacking **kwargs in "field()" is not supported'
|
||||
else:
|
||||
message = '"field()" does not accept positional arguments'
|
||||
ctx.api.fail(message, expr)
|
||||
return True, {}
|
||||
assert name is not None
|
||||
args[name] = arg
|
||||
return True, args
|
||||
return False, {}
|
||||
Loading…
Add table
Add a link
Reference in a new issue