diff --git a/src/templates/Exploratory_Charts-Movie_Data-Latest.html b/src/templates/Exploratory_Charts-Movie_Data-Latest.html index 0f76e19..9600691 100644 --- a/src/templates/Exploratory_Charts-Movie_Data-Latest.html +++ b/src/templates/Exploratory_Charts-Movie_Data-Latest.html @@ -1,7 +1,7 @@
import numpy as np # linear algebra
@@ -15,7 +15,7 @@
from subprocess import check_output
@@ -48,7 +48,7 @@
import os
@@ -67,7 +67,6 @@
from sklearn import neighbors
from sklearn import linear_model
from pandas.core import datetools
-from pandas.core import datetools
%matplotlib inline
f = pd.read_csv("C:/Users/alurus/GIT-Repository/VIZ Day/pyDataVizDay2/data/raw/movie_metadata.csv")
-data=DataFrame(f)
-data.head()[:2]
-f = pd.read_csv("C:/Users/alurus/GIT-Repository/VIZ Day/pyDataVizDay2/data/raw/movie_metadata.csv")
+data=DataFrame(f)
+data.head()[:5]
+2 rows × 28 columns
+5 rows × 28 columns
X_data=data.dtypes[data.dtypes!='object'].index
-X_train=data[X_data]
+X_train=data[X_data]
X_train.head()[:2]
# GETTING Correllation matrix
corr_mat=X_train.corr(method='pearson')
-plt.figure(figsize=(20,10))
+plt.figure(figsize=(23,10))
sns.heatmap(corr_mat,vmax=1,square=True,annot=True,cmap='Oranges');
df = pd.read_csv('C:/Users/alurus/GIT-Repository/VIZ Day/pyDataVizDay2/data/raw/movie_metadata.csv')
+df = pd.read_csv('C:/Users/alurus/GIT-Repository/VIZ Day/pyDataVizDay/data/raw/movie_metadata.csv')
df.head()
@@ -2836,7 +2939,7 @@ jRB/YHtFyzwREbF+SYckIiIiIiKayRqSiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIho
-Out[12]:
+Out[34]:
@@ -3025,7 +3128,7 @@ jRB/YHtFyzwREbF+SYckIiIiIiKayRqSiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIho
-In [13]:
+In [29]:
df['diff_gross'] = df['gross'] - df['budget']
@@ -3039,7 +3142,7 @@ jRB/YHtFyzwREbF+SYckIiIiIiKayRqSiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIho
aggfunc='sum')
-fig,ax = plt.subplots(figsize=(8,6))
+fig,ax = plt.subplots(figsize=(14,8))
sns.heatmap(director_budge_pivot['diff_gross'],vmin=0,annot=False,linewidth=.5,ax=ax,cmap='Oranges')
plt.title('Director vs Year and Share')
plt.ylabel('Year');
@@ -3061,571 +3164,771 @@ jRB/YHtFyzwREbF+SYckIiIiIiKayRqSiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIhoJh2SiIiIiIho
@@ -3638,7 +3941,7 @@ QqFQKIxTyiBdKBQKhcI4pQzShUKhUCiMU/4/DsC3OtXvG94AAAAASUVORK5CYII=
-In [14]:
+In [18]:
data = pd.read_csv("C:/Users/alurus/GIT-Repository/VIZ Day/pyDataVizDay2/data/raw/movie_metadata.csv")
@@ -3659,7 +3962,7 @@ QqFQKIxTyiBdKBQKhcI4pQzShUKhUCiMU/4/DsC3OtXvG94AAAAASUVORK5CYII=
-In [32]:
+In [50]:
matplotlib.rcParams['figure.figsize'] = (18, 9.0)
@@ -5604,7 +5907,7 @@ VcKBppmZmZlV4j9rH7MwnBa6QwAAAABJRU5ErkJggg==
-In [39]:
+In [45]:
!jupyter nbconvert Exploratory_Charts-Movie_Data-Latest_a.ipynb --template basic
@@ -5625,7 +5928,7 @@ VcKBppmZmZlV4j9rH7MwnBa6QwAAAABJRU5ErkJggg==
@@ -5636,10 +5939,23 @@ VcKBppmZmZlV4j9rH7MwnBa6QwAAAABJRU5ErkJggg==
-In [ ]:
+In [11]:
-
+Pf = pd.read_csv('C:/Users/alurus/GIT-Repository/VIZ Day/pyDataVizDay/data/raw/movie_metadata.csv')
+
+
+
+
+
+
+
+
+
+In [15]:
+
+
+Pf.head([:5];